Day 1 - Lecture 1

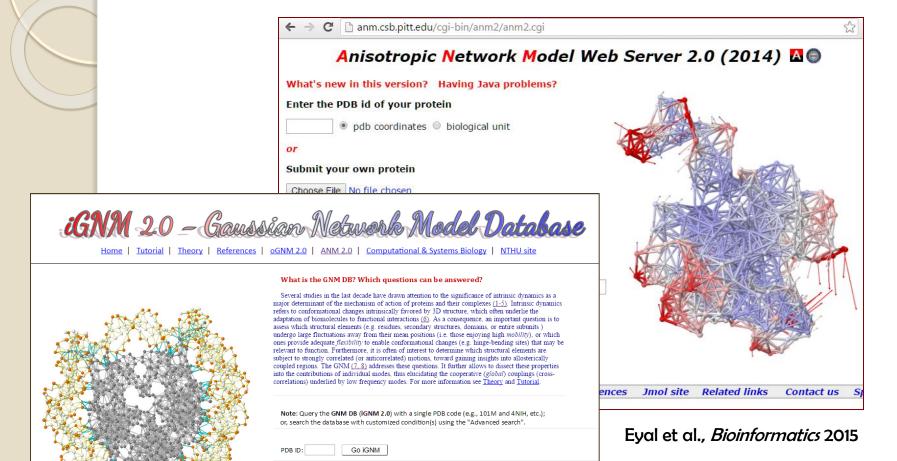
Collective Dynamics of Biomolecules using

Elastic Network Models

Ivet Bahar

Department of Computational and Systems Biology
School of Medicine, University of Pittsburgh, PA 15260

MMBioS Resources



Submit Query

Biological assembly:

Yes

No

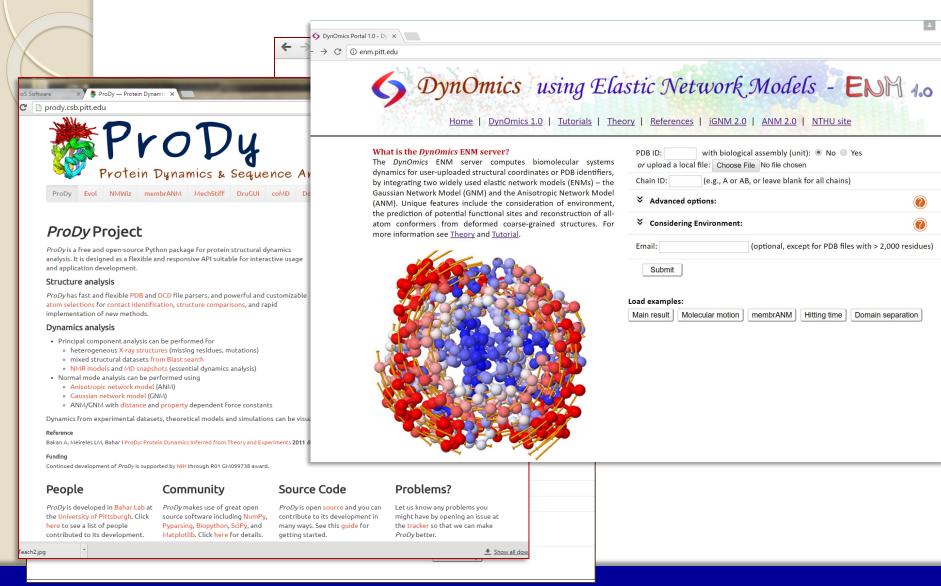
Advanced search:

Molecular viewer:

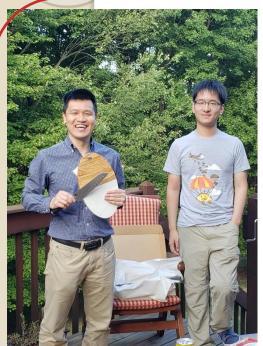
JsMol
Jmol (fast response for big structures)

Search conditions

MMBioS Resources



Dr. Timothy LezonAssistant Prof, DCSB, Pitt



Dr. Hongchun LiAssoc Professor,
Shenzhen Institute

Dr. She (John) ZhangPostdoc at OpenEye

Dr. James KriegerPostdoc, U of Madrid

Dr. Anindita DuttaPrincipal Deep Learning/Al
Engineer at Illumina

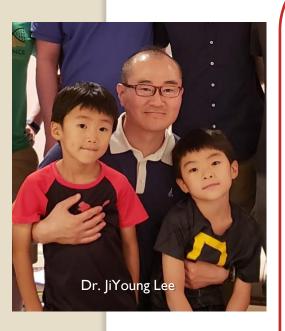
Dr. Ahmet BakanSenior Software Engineer,
Google Inc.

Dr. Ying LiuSoftware Engineer,
Google Inc.

Dr. Chakra Chennubhotla Assoc Prof, DCSB, Pitt

Reference:

The team





Yan Zhang

Dr. Anupam Banerjee

ProDy References

Bakan A,* Dutta A,* Mao W, Liu Y, Chennubhotla C, Lezon TR, Bahar I (2014) Evol and ProDy for Bridging Protein Sequence Evolution and Structural Dynamics Bioinformatics 30: 2681-3

Bakan A, Meireles LM, Bahar I (2011) <u>ProDy: Protein dynamics inferred from theory and experiments</u> Bioinformatics **27**: 1575-1577.

Zhang S, Krieger JM, Zhang Y, Kaya C, Kaynak B, Mikulska-Ruminska K, Doruker P, Li H, Bahar I. (2021) ProDy 2.0: Increased Scale and Scope after 10 Years of Protein Dynamics Modelling with Python. Bioinformatics Apr 5:btab187.

ProDy: Usage and dissemination statistics

Date	Releases	Downloads ¹	Visits ²	Unique ³	Pageviews ²	Countries ⁵
Nov'10 - Oct'11	19	8,530	8,678	2,946	32,412	45
Nov'll - Oct'l2	6+9*	35,108	16,472	6,414	71,414	59
Nov'12 - Oct'13	8 *	87,909	19,888	8,145	86,204	66
Nov'13 - Oct'14	5*	140,101	24,134	11,170	112,393	69
Nov'14 - May'15	 *	68,230	15,941	8,479	66,641	50
June '15- June'16	5*	124,613	32,491	15,402	140,818	132
June'16- June 17			31,374	16,201	129,900	136
Total (6/17)	53+	464,491+	148,978	68,757	639,782	136
Total (5/18)		979,356	182,415	86,063	784,430	
Total (5/19)		1,670,461	218,811	106,130		
Total (10/20)		2,161939	280,862	140,905		

Download statistics retrieved from PyPI (https://pypi.python.org/pypi/vanity).

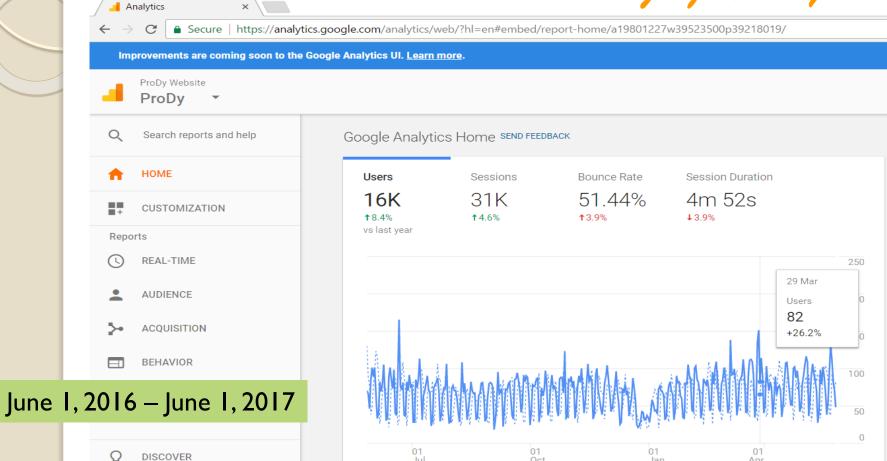
² Google Analytics (<u>www.google.com/analytics</u>) was used to track:

Usage pattern

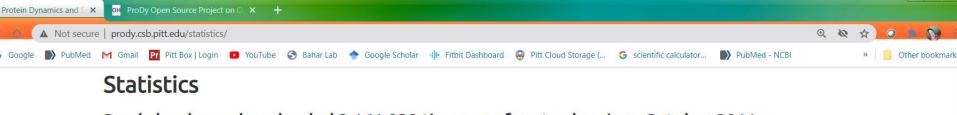
ADMIN

Apr

Jan

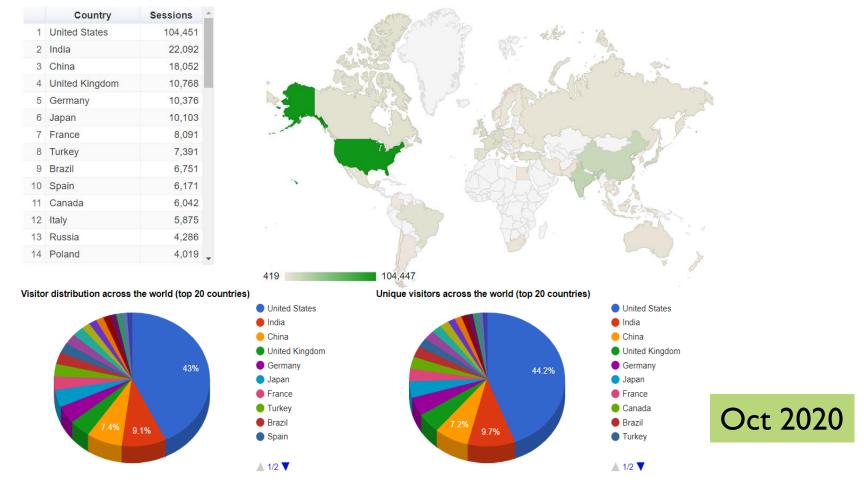


Last year -



Prody has been downloaded 2,161,939 times as of yesterday since October 2011.

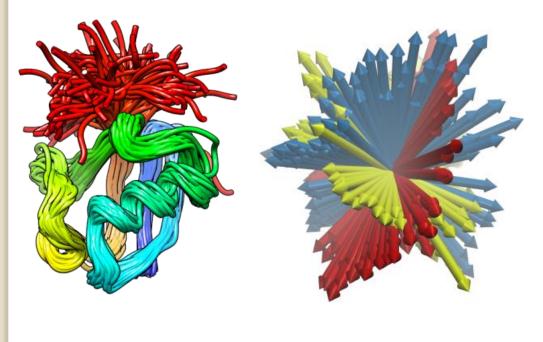
The table and map below displays the data from Google Analytics on the total number of visitors to ProDy API website since Jun 2011. More detailed statistics from Google Analytics are given below



Unique Visitors	Visits	Unique Visitors/Visits	Avg. Pages/Visit	Avg. Duration/Visit
140,905	280,862	50.2%	4.2 (number of pages)	04:52 (min:sec)

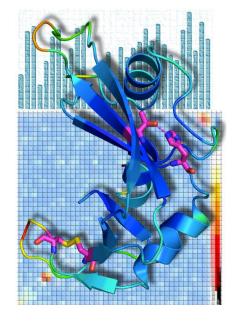
Tutorials

http://prody.csb.pitt.edu/tutorials/

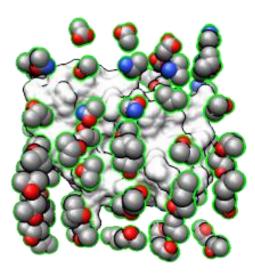


ProDy

NMWiz

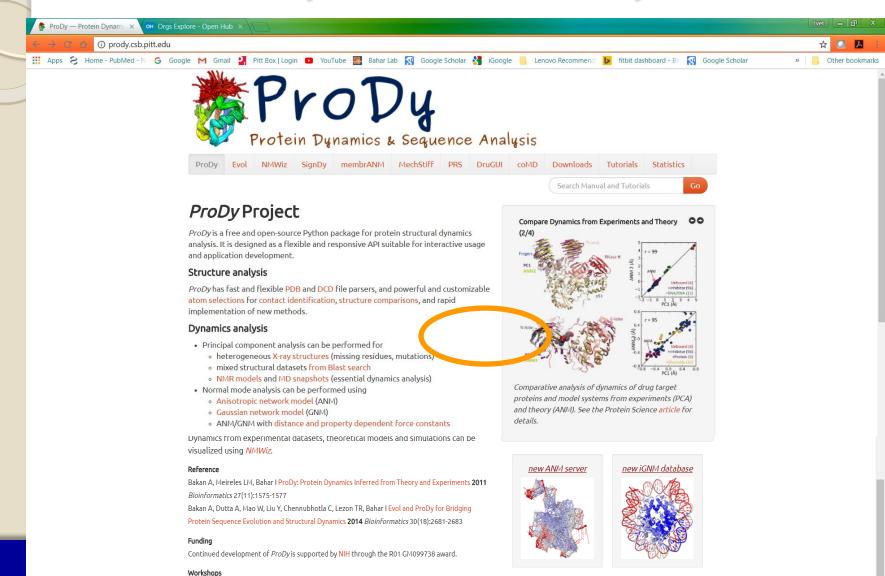


Evol



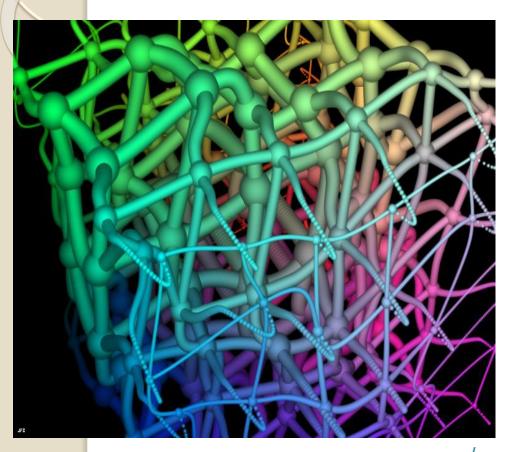
Druggability

Workshop files on ProDy website



The ProDy development team hosts annual workshops together with the NAMD/VMD development team as part of our joined center MMBioS funded by NIH through the P41

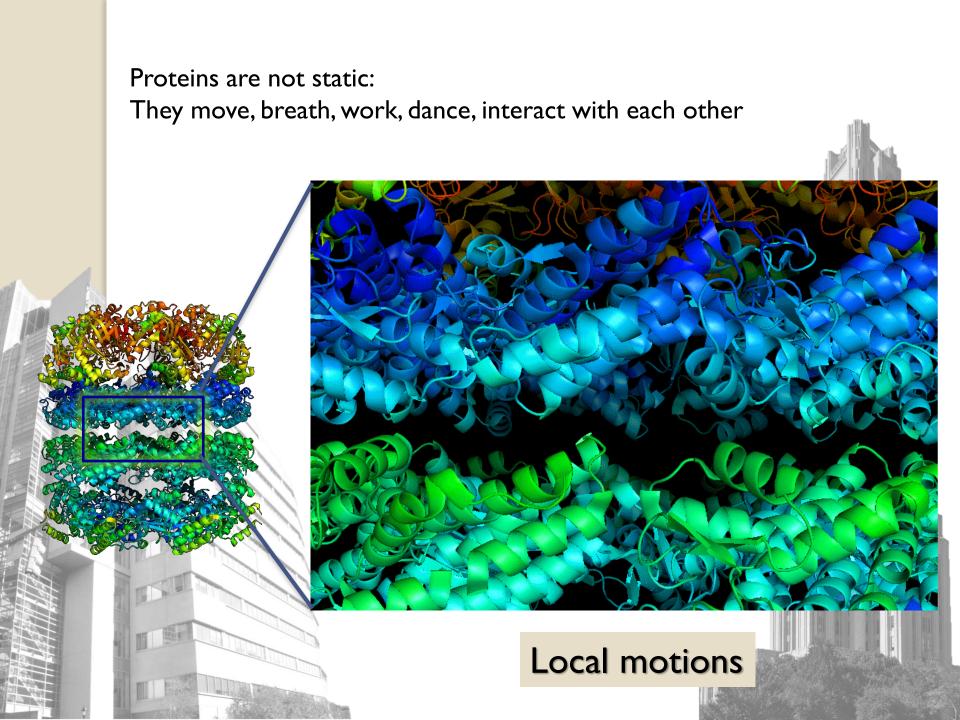
Representation of structure as a network



http://www.lactamme.polytechnique.fr/

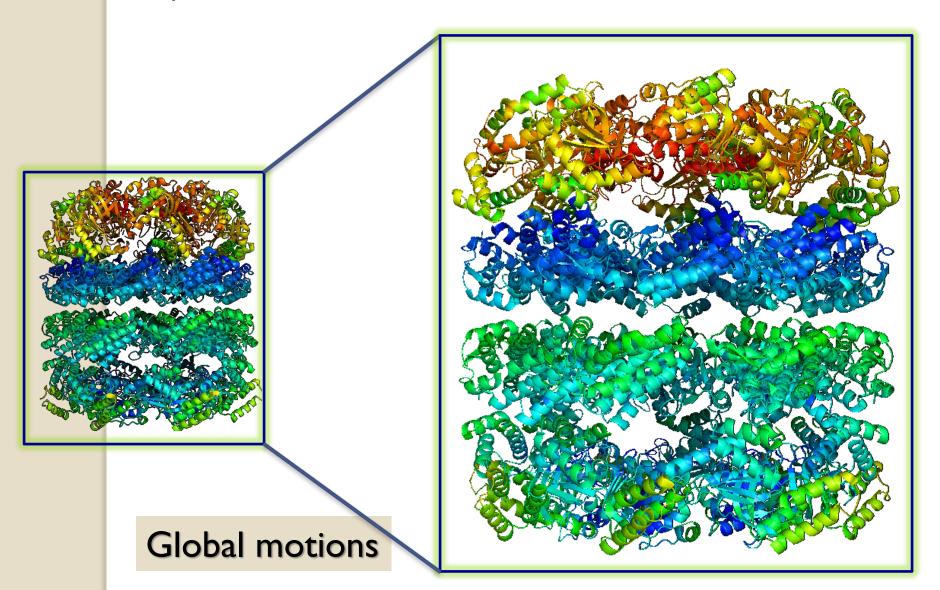
Why network models?

- for large systems' collective motions & long time processes beyond the capability of full atomic simulations
- to incorporate structural data in the models – at multiple levels of resolution
- to take advantage of theories developed in other disciplines: polymer physics, graph theory, spectral graph methods, etc.



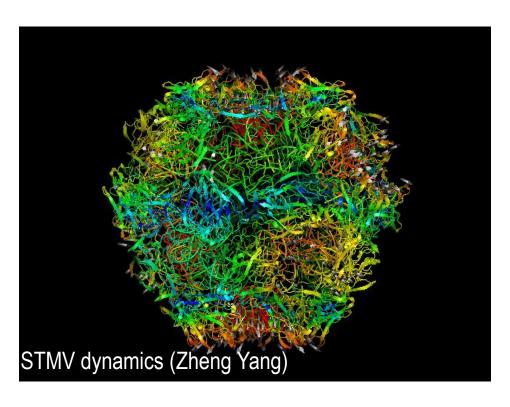
Proteins are not static:

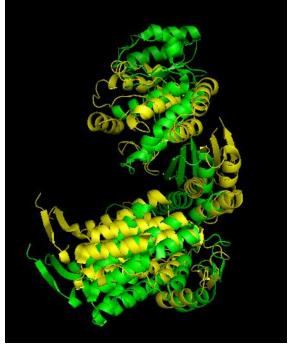
They move, breath, work, dance, interact with each other



Many proteins are molecular machines

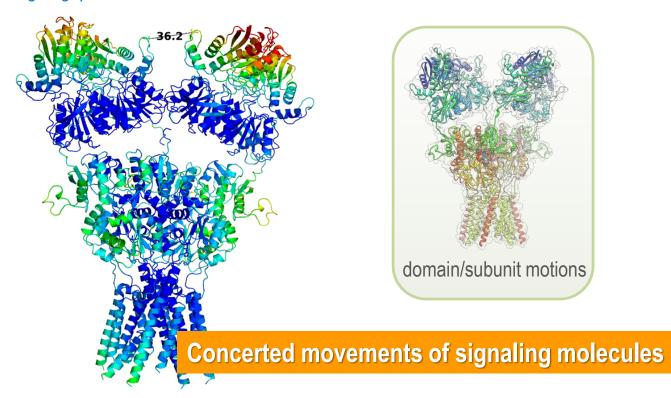
And mechanical properties become more important in complexes/assemblies



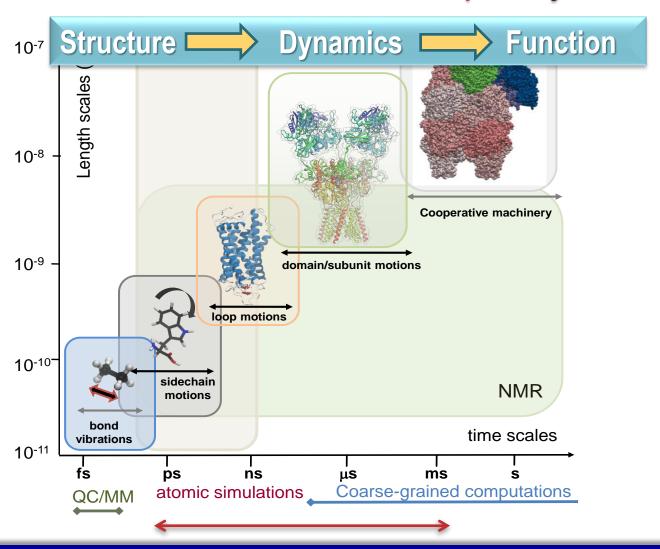


Each structure encodes a unique dynamics

Signaling dynamics of AMPARs and NMDARs

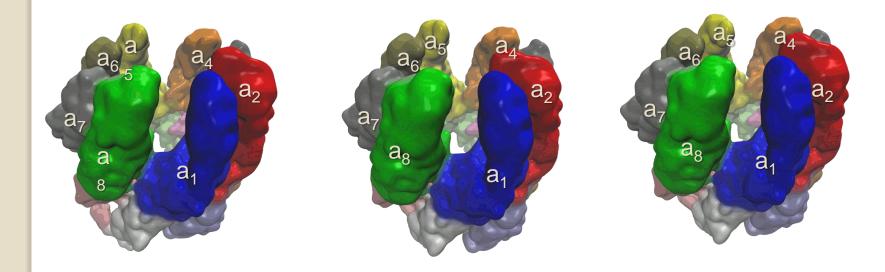


Each structure encodes a unique dynamics



Modeling the machinery of cryo-EM structures

Yan Zhang



Collective modes of the mammalian chaperonin TRiC/CCT reveals a statedependent sequence of asymmetric movements

Summary

1. Theory

- a. Gaussian Network Model (GNM)
- b. Anisotropic Network Model (ANM)
- c. Resources/Servers/Databases (ProDy, DynOmics)

2. Bridging Sequence, Structure and Function

- a. Ensemble analysis and functional modes of motion
- b. Combining sequence and structure analyses signature dynamics
- Modeling membrane proteins and lipid environment with ANM

3. Allostery and druggability

- a. Essential site scanning and allosteric pocket prediction
- b. Druggability simulations

Gaussian Network Model (GNM)

- Li H, Chang YY, Yang LW, Bahar I (2016) <u>iGNM 2.0: the Gaussian network</u> <u>model database for bimolecular structural dynamics</u> Nucleic Acids Res 44: D415-422
- Bahar I, Atilgan AR, Erman B (1997) <u>Direct evaluation of thermal fluctuations in protein</u> Folding & Design 2: 173-181.

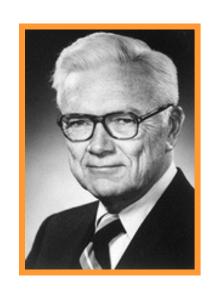
Anisotropic Network Model (ANM)

- O Eyal E, Lum G, Bahar I (2015) <u>The Anisotropic Network Model web server at 2015 (ANM 2.0)</u> Bioinformatics **31**: 1487-9
- Atilgan AR, Durrell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I
 (2001) <u>Anisotropy of fluctuation dynamics of proteins with an elastic network model</u> *Biophys J* 80: 505-515.

Physics-based approach

- Statistical Mechanics of Polymers
- Theory of Rubber Elasticity

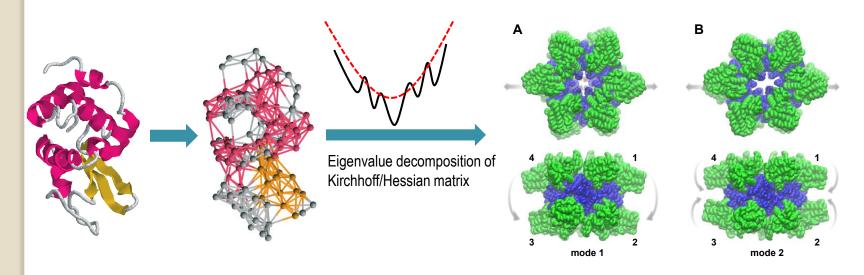
Elastic Network Model for Proteins



Paul J. Flory (1910-1985) Nobel Prize in Chemistry 1974

Collective motions

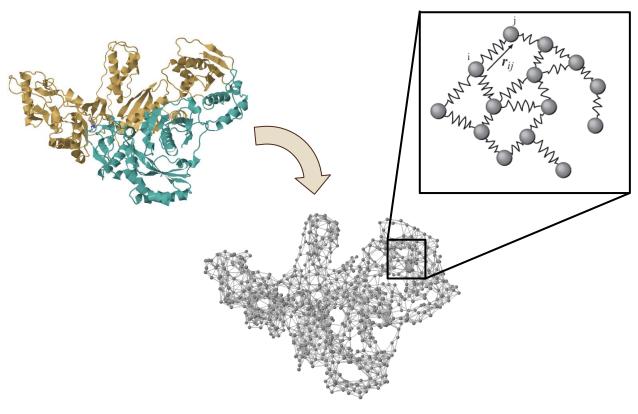
using elastic network models (ENM)



GNM: Bahar et al *Fold* & Des 1996; Haliloglu et al. *Phys Rev Lett* 1997 **ANM**: Doruker et al. *Proteins* 2000; Atilgan et al, *Biophys J* 2001

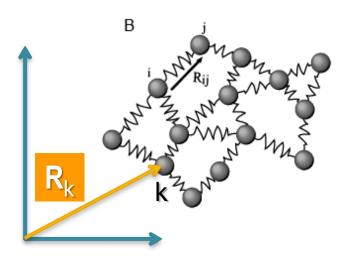
Basic approach:

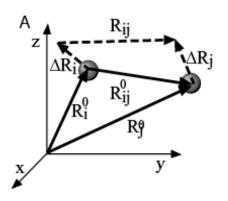
Mapping the structure to a network, the beads of which are the residues, and springs connect nearest spatial neighbors



Elastic network

Gaussian Network Model (GNM)



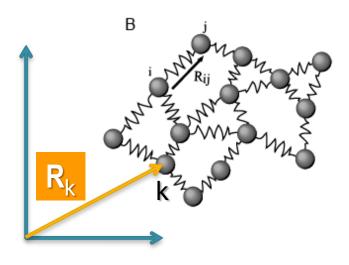


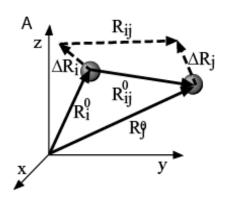
- Each node represents a residue
- Residue positions, \mathbf{R} i, identified by α -carbons' coordinates
- Springs connect residues located within a cutoff distance (e.g., 10 Å)
- \rightarrow Nodes are subject to **Gaussian** fluctuations ΔR_i
- → Inter-residue distances R_{ij} also undergo Gaussian fluctuations

$$\rightarrow \Delta \mathbf{R}_{ij} = \Delta \mathbf{R}_{j} - \Delta \mathbf{R}_{i}$$

Fluctuations in residue positions

Gaussian Network Model (GNM)





Fluctuation vector:

$$\begin{array}{c|c}
\Delta \mathbf{R}_1 \\
\Delta \mathbf{R}_2 \\
\Delta \mathbf{R}_3 \\
\Delta \mathbf{R}_4 \\
\end{array}$$

$$\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\Delta \mathbf{R}_N \\
\end{array}$$

Fluctuations in residue positions

Fluctuation

with respect to starting structure R(O)

Instantaneous deviation for atom i

$$\Delta \mathbf{R}_{i}(t_{k}) = \mathbf{R}_{i}(t_{k}) - \mathbf{R}_{i}(0)$$

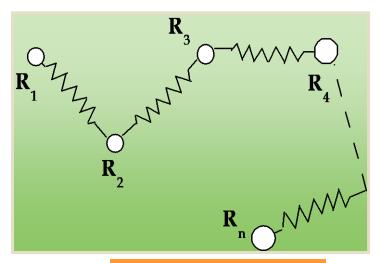
Under equilibrium conditions:

Average displacement from equilibrium: $\langle \Delta \mathbf{R}_i(t_k) \rangle = 0$

But the mean-square fluctuation (MSF), $< (\Delta \mathbf{R}_i(\mathbf{t}_k))^2 > \neq 0$

Rouse model for polymers

Classical bead-and-spring model



Kirchhoff matrix

$$\Gamma = \begin{bmatrix} 1 & -1 \\ -1 & 2 & -1 \\ & -1 & 2 & -1 \\ & & & & \\ & & & & \\ & & & & \\ & & & -1 & 2 & -1 \\ & & & & -1 & 1 \end{bmatrix}$$

Force constant =
$$\mathbf{R}_{12}$$
- \mathbf{R}_{12}^0

$$V_{\text{tot}} = (\gamma/2) [(\Delta R_{12})^2 + (\Delta R_{23})^2 + \dots + (\Delta R_{N-1,N})^2]$$
$$= (\gamma/2) [(\Delta R_2 - \Delta R_1)^2 + (\Delta R_3 - \Delta R_2)^2 + \dots + \dots$$

Rouse model for polymers

Kirchhoff matrix

$$\Gamma = \begin{bmatrix} 1 & -1 & & & & & \\ -1 & 2 & -1 & & & & \\ & -1 & 2 & -1 & & & \\ & & & \ddots & & & \\ & & & & -1 & 2 & -1 \\ & & & & -1 & 1 \end{bmatrix}$$

Force constant

$$V_{\text{tot}} = (\gamma/2) [(\Delta R_{12})^2 + (\Delta R_{23})^2 + \dots (\Delta R_{N-1,N})^2]$$
$$= (\gamma/2) [(\Delta R_2 - \Delta R_1)^2 + (\Delta R_3 - \Delta R_2)^2 + \dots$$

Rouse model for polymers

Fluctuation vector

Kirchhoff matrix

$$(\gamma/2)$$
 $[\Delta R_1 \ \Delta R_2 \ \Delta R_3 \ ... \ \Delta R_N]$

$$V_{tot} = (\gamma/2) \Delta R^T \Gamma \Delta R$$

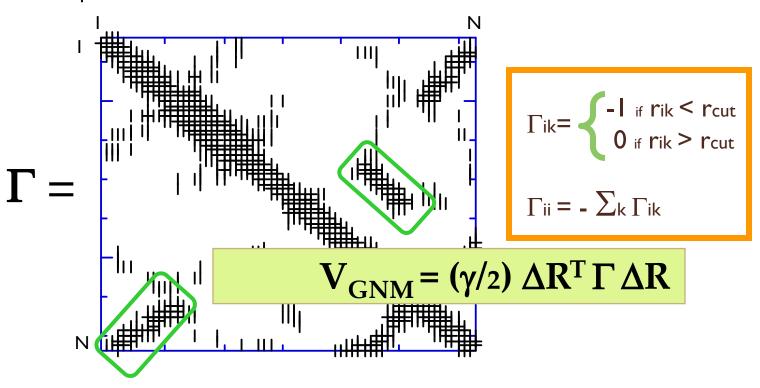
Force constant

$$V_{\text{tot}} = (\gamma/2) [(\Delta R_{12})^2 + (\Delta R_{23})^2 + \dots (\Delta R_{N-1,N})^2]$$

= $(\gamma/2) [(\Delta R_2 - \Delta R_1)^2 + (\Delta R_3 - \Delta R_2)^2 + \dots$

Kirchhoff matrix for inter-residue contacts

For a protein of N residues



Γ provides a complete description of contact topology!

An alternative definition of spring constant: distance dependent γ

$$U_{
m elastic} = rac{1}{2} {\sum\limits_{{
m i}<{
m j}}} k\left({R_{
m ij}}
ight) \left({r_{
m ij}} - {R_{
m ij}}
ight)^2,$$

HCA model

Hinsen et al Harmonicity in slow protein dynamics. Chem Phys. 2000; 261:25–37.

$$k\left(R
ight) = egin{cases} 205.5 \cdot R - 571.2 & ext{if } r & \leq 4.0 \, \mathring{A} \ 305.9 imes 10^3 \cdot R^{-6} & ext{if } r & > 4.0 \, \mathring{A}, \end{cases}$$

where the unit for k(R) is kcal mol⁻¹ Å⁻²

Statistical mechanical averages

$$< f(x) > = \int f(x) p(x) dx = \frac{\int f(x) w(x) dx}{\int w(x) dx} = \frac{\int f(x) w(x) dx}{Z}$$

Suppose f = cross-correlation between residue fluctuations = $<(\Delta \mathbf{R}_i \cdot \Delta \mathbf{R}_j>$ And x represents the conformational changes (multiple modes of motion)

$$<\Delta \mathbf{R}_i \cdot \Delta \mathbf{R}_j> = (1/Z_N) \int (\Delta \mathbf{R}_i \cdot \Delta \mathbf{R}_j) e^{-V/k_B T} d\{\Delta \mathbf{R}\}$$

$$= (3 k_B T / \gamma) \left[\Gamma^{-1} \right]_{ij}$$

 Γ provides a complete description of equilibrium fluctuations!

Kirchhoff/connectivity matrix fully defines

the cross-correlations between residue motions

$$[\Gamma^{-1}]_{ij} \sim \langle (\Delta \mathbf{R}_i . \Delta \mathbf{R}_j) \rangle$$

and the mean-square fluctuations of residues

$$\left[\mathbf{\Gamma}^{-1}\right]_{ii} \sim \langle (\Delta \mathbf{R}_i)^2 \rangle$$

Comparison with B factors

 X-ray crystallographic structures deposited in the PDB also report the B-factors (Debye-Waller factors) for each atom, in addition to atomic coordinates

 B-factors scale with mean-square fluctuations (MSFs), i.e. for atom i,

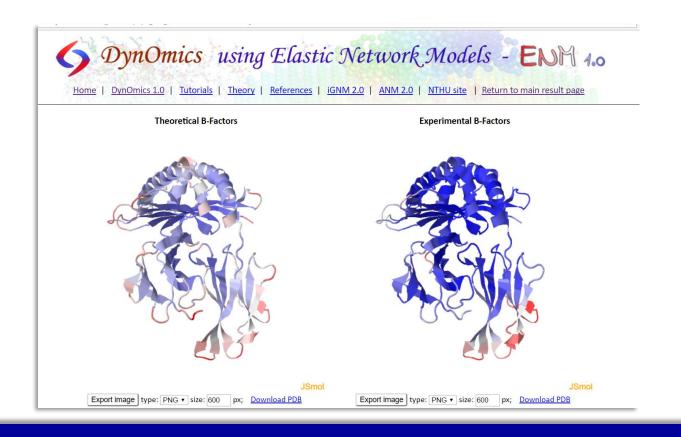
$$B_i = [8\pi^2/3] < (\Delta \mathbf{R}_i)^2 >$$

How do residue MSFs compare with the B-factors?

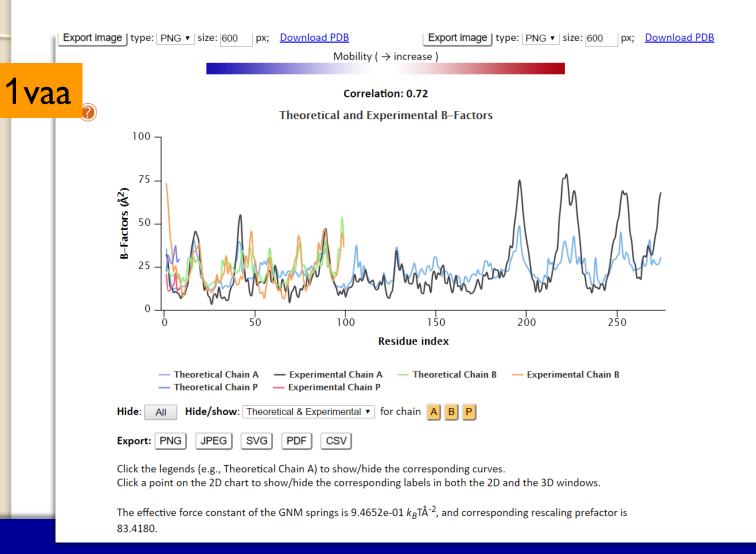
Output from DynOmics

Example: 1vaa

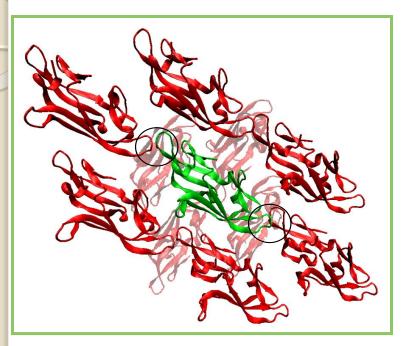
PDB title: CRYSTAL STRUCTURES OF TWO VIRAL PEPTIDES IN COMPLEX WITH MURINE MHC CLASS I H-2KB

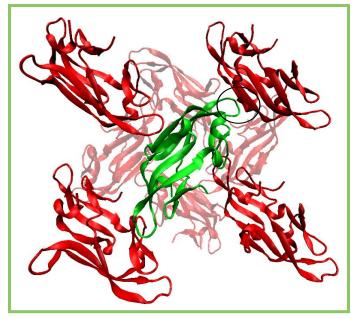


Output from DynOmics



B-factors are affected by crystal contacts

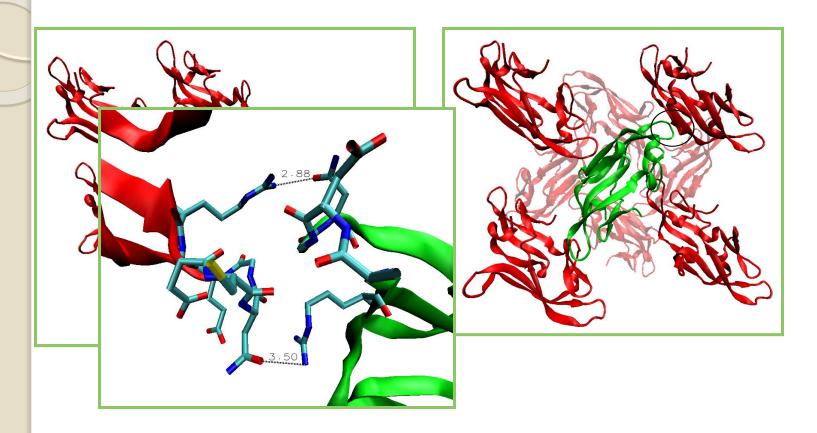




Two X-ray structures for a designed sugar-binding protein LKAMG

1

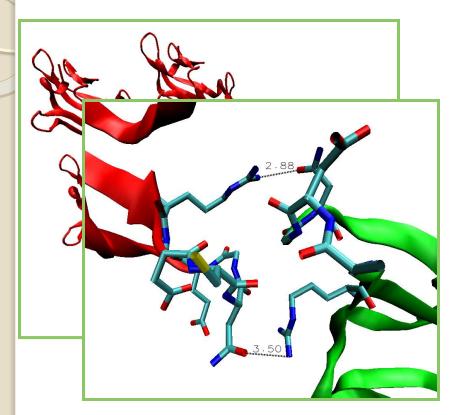
B-factors are affected by crystal contacts

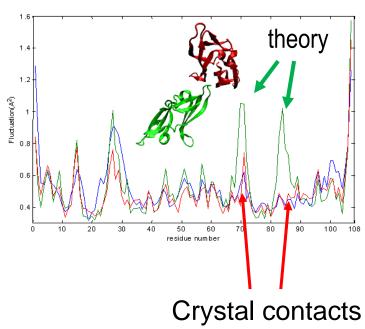


Particular loop motions are curtailed by intermolecular contacts in the crystal environment causing a discrepancy between theory and experiments

FOR MORE INFO..

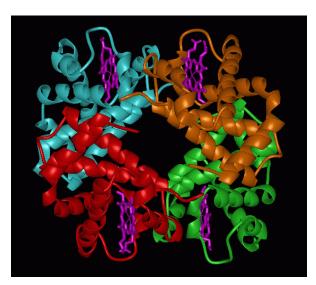
Agreement between theory and experiments upon inclusion of crystal lattice effects into the GNM

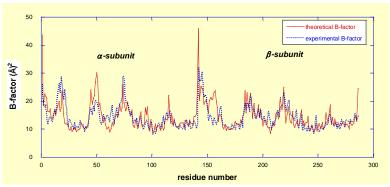




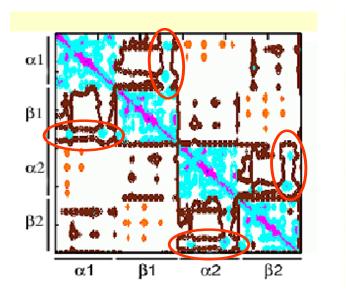
Particular loop motions are curtailed by intermolecular contacts in the crystal environment causing a discrepancy between theory and experiments

Application to hemoglobin





B- factors — Comparison with experiments



Intradimer cooperativity – Symmetry rule (Yuan et al. JMB 2002; Ackers et al. PNAS 2002.)

Cross-correlations

- Provide information on the relative movements of pairs of residues
- Purely orientational correlations (correlation cosines) are obtained by normalizing cross-correlations as

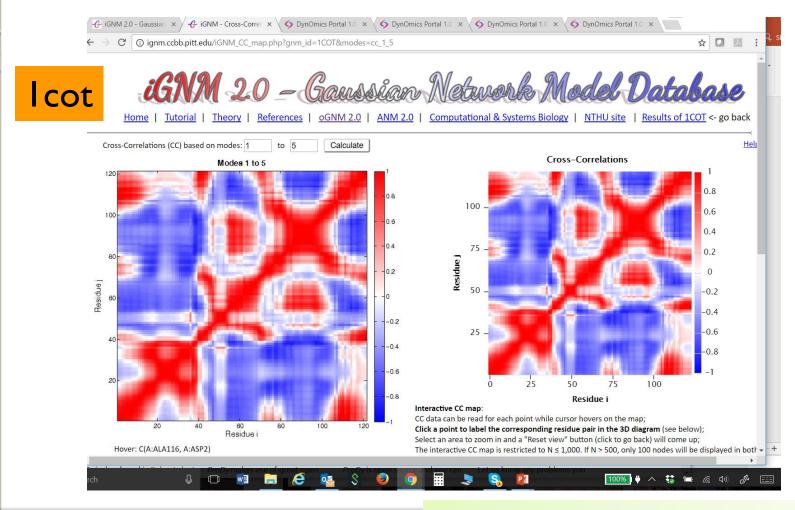
$$-1 \le \frac{\langle (\Delta \mathbf{R}_i . \Delta \mathbf{R}_j) \rangle}{[\langle (\Delta \mathbf{R}_i)^2 \rangle \langle (\Delta \mathbf{R}_j)^2 \rangle]^{1/2}}$$

Fully

anticorrelated

Fully

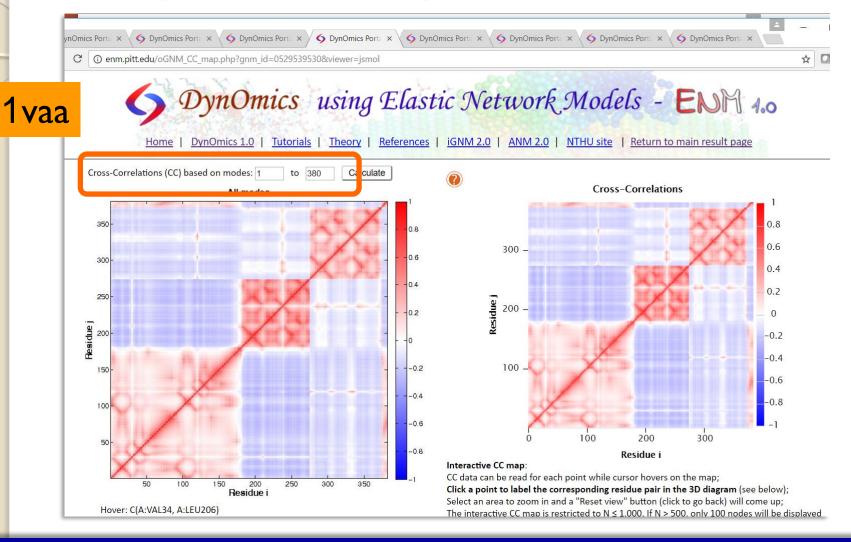
Output from iGNM



Li, Chang, Yang and Bahar (2016)

Nucleic Acids Res 44: D415-422

Output from DynOmics - ENM



Cross-Correlations are elements of the

Covariance Matrix C

Covariance scales with the inverse of the Kirchhoff matrix.

The proportionality constant is $3kT/\gamma$

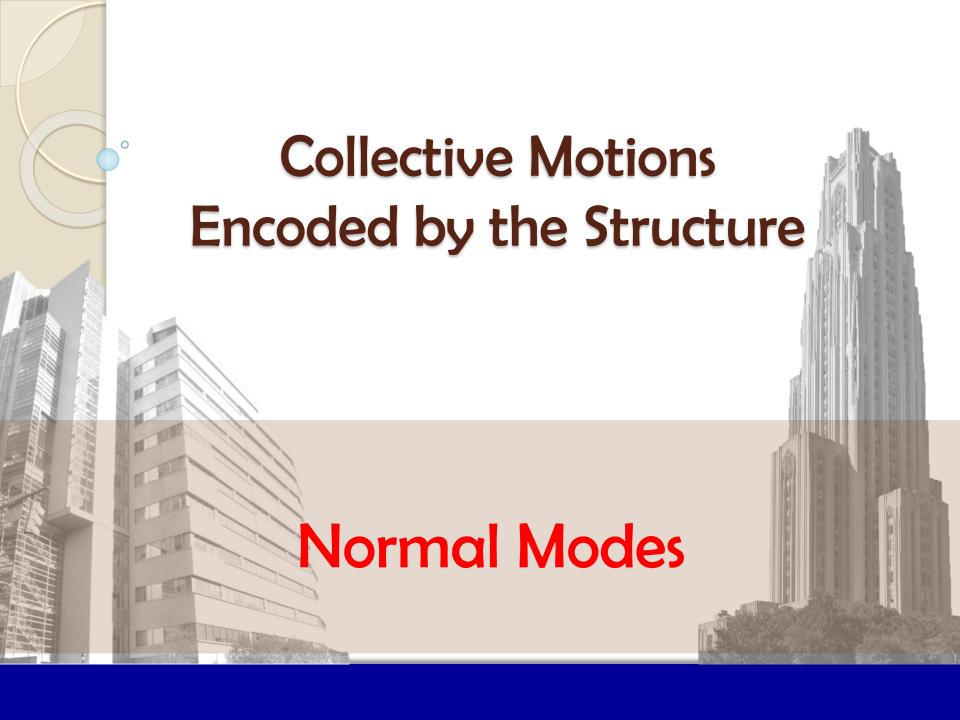
Covariance matrix (NxN)

$<\Delta \mathbf{R}_1$. $\Delta \mathbf{R}_1>$	$<\Delta \mathbf{R}_1$. $\Delta \mathbf{R}_2>$	•••	•••	$<\Delta \mathbf{R}_1$. $\Delta \mathbf{R}_N>$
$\langle \Delta \mathbf{R}_2. \Delta \mathbf{R}_1 \rangle$	$\langle \Delta \mathbf{R}_2. \Delta \mathbf{R}_2 \rangle$			
•••				
•••				
$<\!\!\Delta \mathbf{R}_{\mathrm{N}}$. $\Delta \mathbf{R}_{\mathrm{1}}\!\!>$				$<\Delta \mathbf{R}_{\mathrm{N}}$. $\Delta \mathbf{R}_{\mathrm{N}}>$

 $= \Delta R \Delta R^{T}$

 $\Delta \mathbf{R} = \mathbf{N}$ -dim vector of instantaneous fluctuations $\Delta \mathbf{R}_i$ for all residues ($1 \le i \le \mathbf{N}$)

 $<\Delta \mathbf{R_i}$. $\Delta \mathbf{R_i}>=$ ms fluctuation of site i averaged over time (or all m snapshots).



Eigenvalue decomposition of Γ

$$\Gamma = \mathbf{U} \Lambda \mathbf{U}^{\mathsf{T}}$$

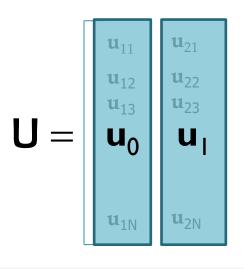
where Λ is the diagonal matrix of eigenvalues

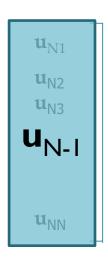
$$\lambda_0 = 0$$
 (zero eigenvalue)

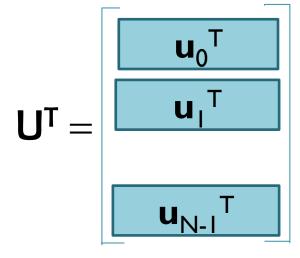
$$\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_{N-1}$$

$$\Gamma = \mathbf{U} \Lambda \mathbf{U}^{\mathsf{T}}$$

and U is the matrix of eigenvectors







Eigenvalue decomposition of Γ

In component form

$$\Gamma_{ij} = \sum_{k} \mathbf{U}_{ik} \Lambda_{k} [\mathbf{U}^{\mathsf{T}}]_{kj}$$

$$\Gamma = \sum_{k} \lambda_k \ \mathbf{u}_k \ \mathbf{u}_k^\mathsf{T}$$

Note:

$$\mathbf{U^T} = \mathbf{U^{-1}}$$

Such that $\Gamma^{-1} = \mathbf{U} \ \Lambda^{-1} \ \mathbf{U^T}$

Pseudoinverse

$$\Gamma^{-1} = \sum_{k=1}^{N-1} {}_{k} \lambda_{k}^{-1} \mathbf{u}_{k} \mathbf{u}_{k}^{\mathsf{T}}$$

Several modes contribute to dynamics

$$<\Delta\mathbf{R}_{i} \cdot \Delta\mathbf{R}_{j}> = \sum_{k} \left[\Delta\mathbf{R}_{i} \cdot \Delta\mathbf{R}_{j}\right]_{k}$$

$$<\Delta \mathbf{R}_{i} \cdot \Delta \mathbf{R}_{j}> = (3k_{B}T/\gamma)\left[\Gamma^{-1}\right]_{ij}$$

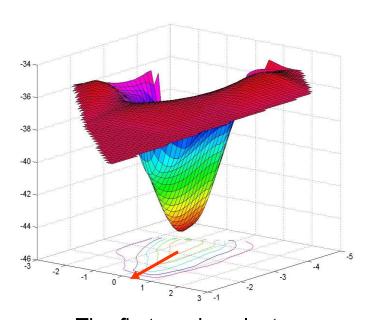
Contribution of mode k

$$[\Delta \mathbf{R}_i \cdot \Delta \mathbf{R}_j]_k = (3k_B T / \gamma) \left[\lambda_k^{-1} \mathbf{u}_k \mathbf{u}_k^T \right]_{ij}$$

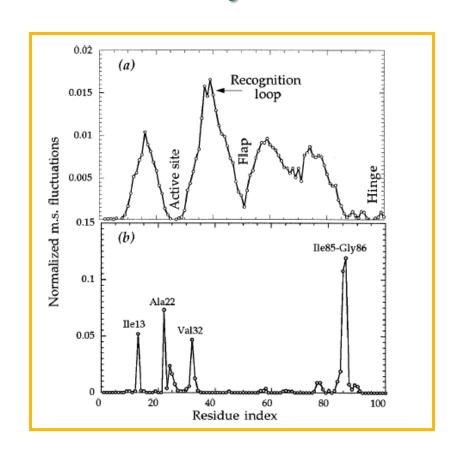
expressed in terms of kth eigenvalue λ_k and kth eigenvector \mathbf{u}_k of Γ

FOR MORE INFO...

Several modes contribute to dynamics

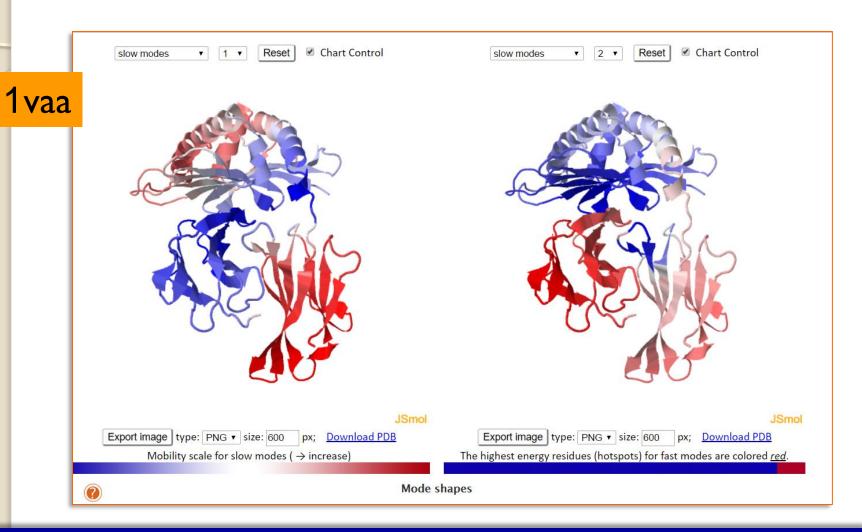


The first mode selects the 'easiest' collective motion

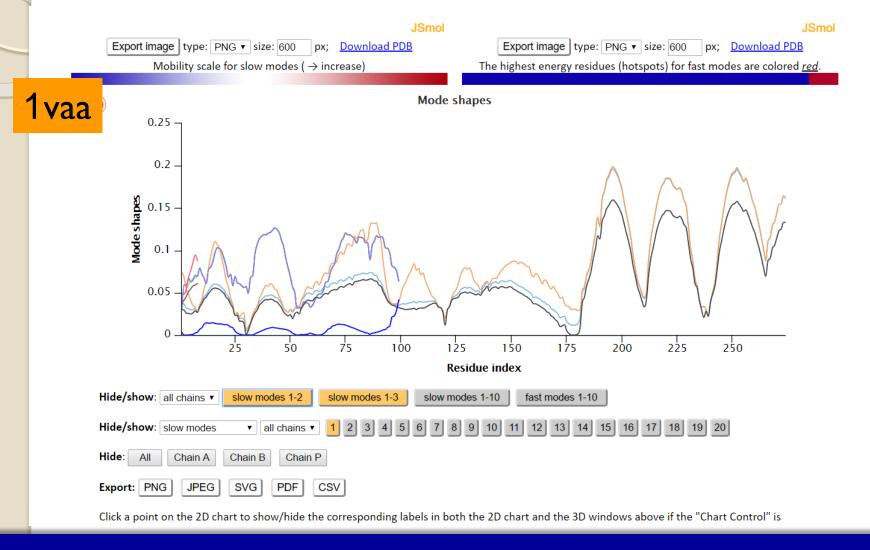


FOR MORE INFO...

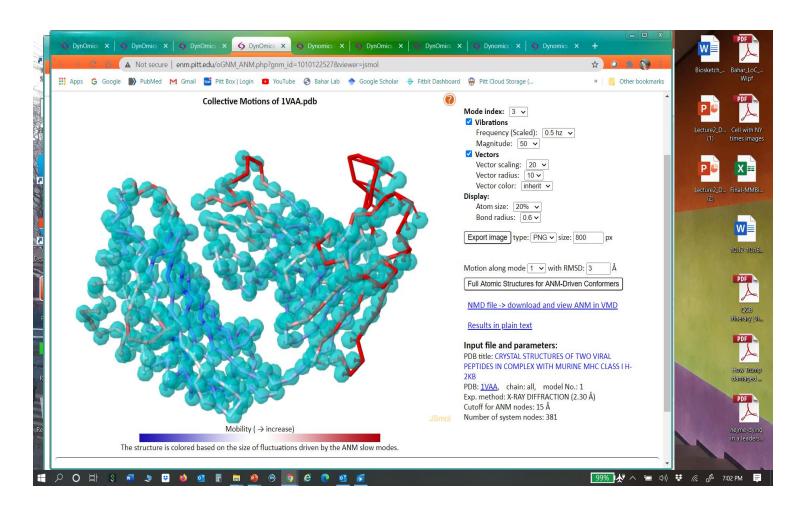
Output from DynOmics



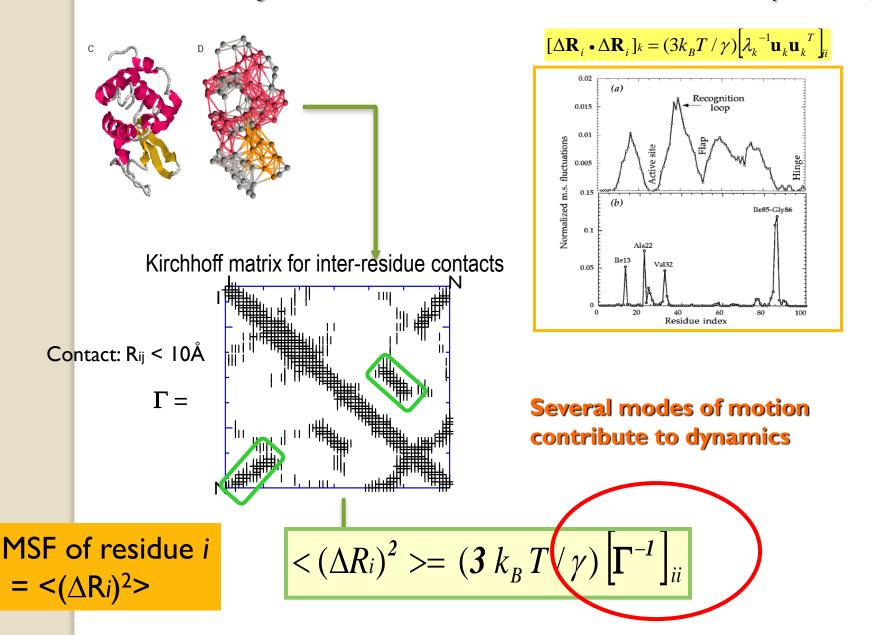
Output from DynOmics



Animations (different modes)



Summary - Gaussian network model (GNM)



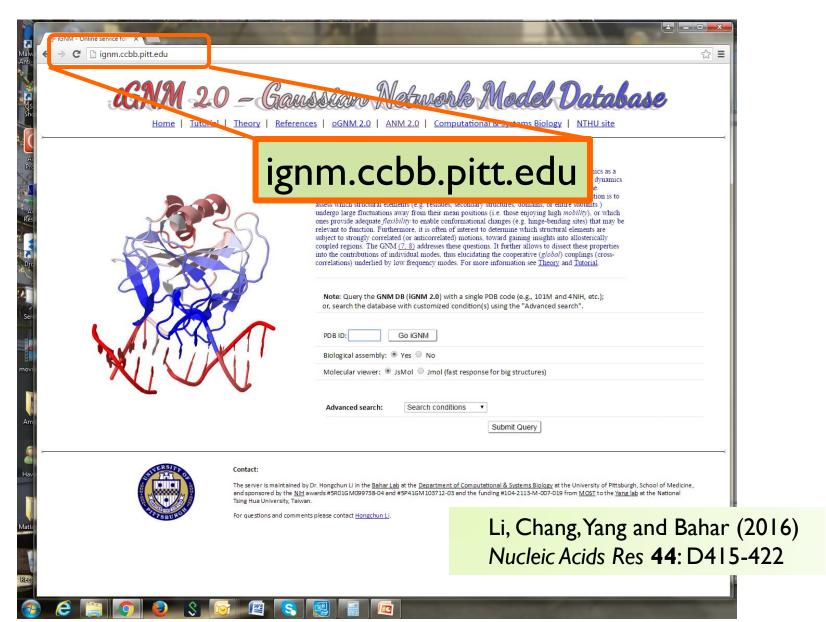
Recipe (GNM)

- Obtain the coordinates of network nodes from the PDB
- lacktriangle Write the corresponding Kirchhoff matrix Γ
- **Eigenvalue decomposition of \Gamma yields** the eigenvalues λ_1 , λ_2 , λ_3 ,...., λ_{N-1} (and λ_0 = 0) and eigenvectors u_1 , u_2 , u_3 ,.... u_{N-1} (and u_0)

Properties

- the eigenvalues scale with the frequency squared ($\lambda_i \sim w_i^2$)
- eigenvector u_k is an N-dim vector
- \bullet the f^h element of u_k represents the displacement of node f in mode k
- the eigenvectors are normalized, i.e. $u_k \cdot u_k = 1$ for all k
- as such, the squared elements of uk represent the 'mobility' distribution
- dynamics results from the superposition of all modes
- $> \lambda_k^{-1/2}$ serves as the weight of $u_k > 1$ low frequency, higher weights

Database of GNM results

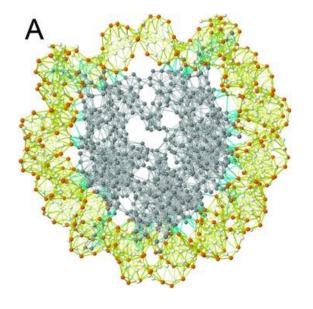


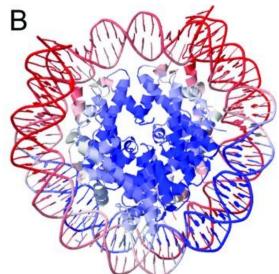
Why use iGNM2.0?

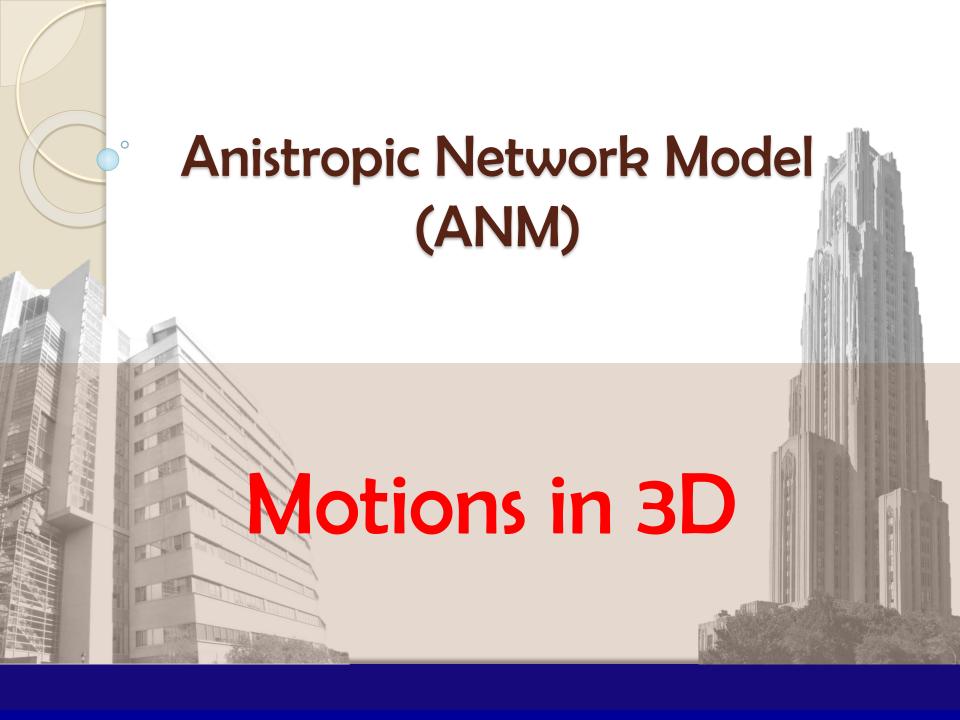
- Easy access to precomputed results for 95% of the PDB including
 - structures beyond the scope of MD
 - protein-DNA/RNA complexes
 - biological assemblies (intact, biologically functional structures)
- Easy to understand, visualize, make functional inferences for any structure

13.9% of the structures in the *i*GNM 2.0 (14,899 out of 107,201) contain >10³ nodes

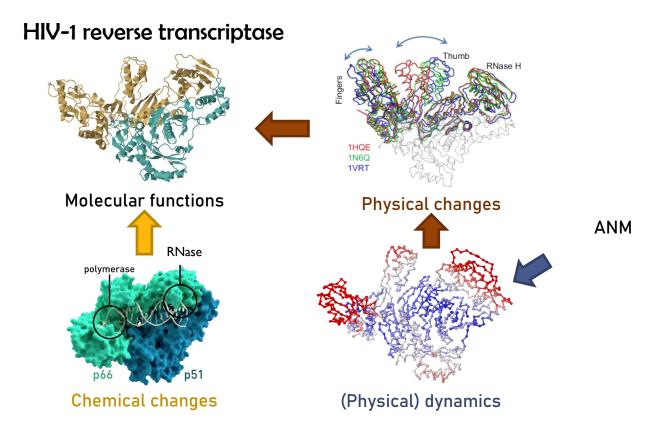
The biological assembly of 39,505 PDB structures is different from the default structure reported in the PDBs (as asymmetric unit)







Biological function entails both chemical and physical events



Bakan, A. and Bahar, I., 2009. *PNAS*, 106(34), pp.14349-14354. Tu, X., Das, K., Han, Q., et al., 2010. Nature Nature Struc Mol Biol, 17(10), p.1202.

Anisotropic Network Model

$$V(\mathbf{r}) = \frac{\gamma}{2} \sum_{i=1}^{N} \sum_{j>i} \left(\left| \mathbf{r}_{ij} \right| - \left| \mathbf{r}_{ij}^{0} \right| \right)^{2} \Theta \left(R_{c} - \left| \mathbf{r}_{ij}^{0} \right| \right)$$
Harmonic Step function

3N

 $\mathbf{H_{ij}} = -\frac{\gamma}{\left(R_{ij}^{0}\right)^{2}} \begin{bmatrix} \left(x_{ij}^{0}\right)^{2} & x_{ij}^{0} y_{ij}^{0} & x_{ij}^{0} Z_{ij}^{0} \\ x_{ij}^{0} y_{ij}^{0} & \left(y_{ij}^{0}\right)^{2} & y_{ij}^{0} Z_{ij}^{0} \\ x_{ij}^{0} Z_{ij}^{0} & y_{ij}^{0} Z_{ij}^{0} & \left(z_{ij}^{0}\right)^{2} \end{bmatrix}$

3N x 3N Hessian of ANM replaces the NxN Kirchhoff matrix of GNM – to yield mode shapes in 3N-d space

Doruker et al. Proteins 40 (2000). Atilgan et al. Biophys J 80 (2001).

Eigenvalue decomposition of H

$$H = \sum V K [V^T]$$

In component form
$$H = \sum_{k} \kappa_k \mathbf{v}_k \mathbf{v}_k^\mathsf{T}$$

$$H^{-1} = \sum_{k=1}^{3N-6} {}_{k} K_{k}^{-1} V_{k} V_{k}^{T}$$

Note:
$$V^T = V^{-1}$$
 Such that
$$H^{-1} = V \ K^{-1} \ V^T$$

ANM covariance matrix

ANM covariance matrix (3Nx3N)

C_{3N}=

C ₁₁	C ₂₁	C ₁₃	C _{1N}
C ₁₂	C ₂₂		
C _{N1}			C _{NN}

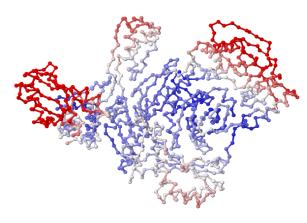
3N x 3N

$$\begin{array}{lll} <\Delta X_1 \Delta X_2> & <\Delta X_1 \Delta Y_2> & <\Delta X_1 \Delta Z_2> \\ <\Delta Y_1 \Delta X_2> & <\Delta Y_1 \Delta Y_2> & <\Delta Y_1 \Delta Z_2> \\ <\Delta Z_1 \Delta X_2> & <\Delta Z_1 \Delta Y_2> & <\Delta Z_1 \Delta Z_2> \end{array}$$

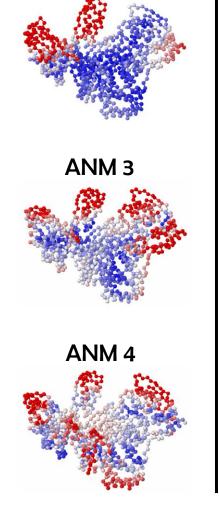
Energetical favorability

Collective motions (softest modes) intrinsically accessible to HIV-1 reverse transcriptase

Anisotropic Network Model (ANM)

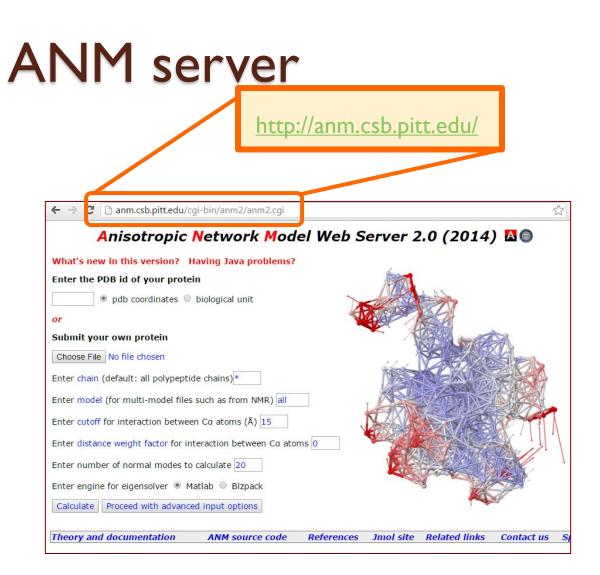


Collective motions (ANM 1)



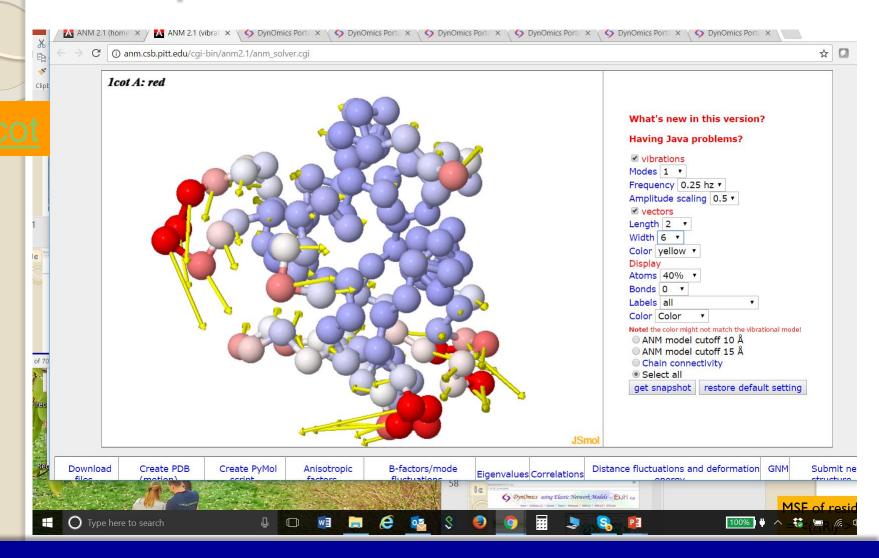
ANM 2

http://dynomics.pitt.edu/

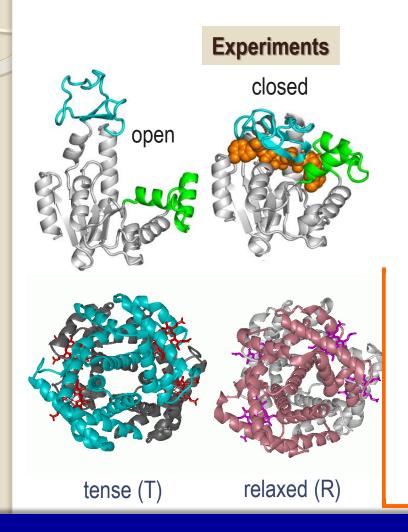


Eyal et al., Bioinformatics 2015

Output from ANM server



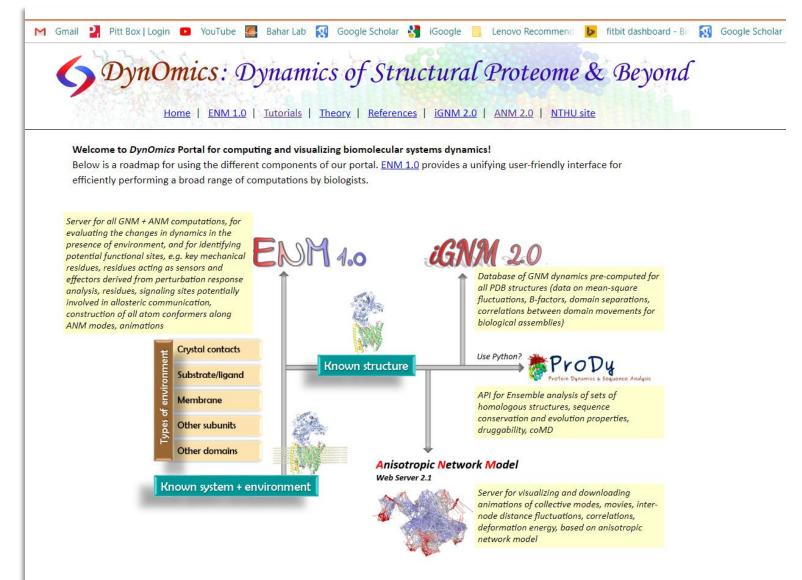
Softest modes are functional

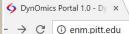


E coli adenylate kinase dynamics: comparison of elastic network model modes with ¹⁵N-NMR relaxation data <u>Temiz</u> <u>NA, Meirovitch E, Bahar I.</u> (2004) *Proteins* 57, 468.

T→ R transition of Hb intrinsically favored by global dynamics Xu, Tobi & Bahar (2003) *J. Mol. Biol.* 333, 153;

DynOmics Portal http://dynomics.pitt.edu/



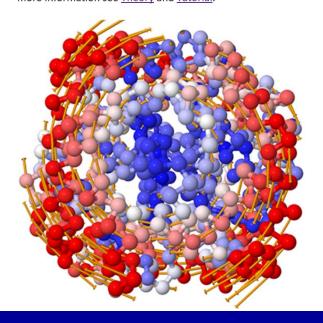


DynOmics using Elastic Network Models - ENM 1.0

Home | DynOmics 1.0 | Tutorials | Theory | References | iGNM 2.0 | ANM 2.0 | NTHU site

What is the DvnOmics ENM server?

The *DynOmics* ENM server computes biomolecular systems dynamics for user-uploaded structural coordinates or PDB identifiers, by integrating two widely used elastic network models (ENMs) – the Gaussian Network Model (GNM) and the Anisotropic Network Model (ANM). Unique features include the consideration of environment, the prediction of potential functional sites and reconstruction of allatom conformers from deformed coarse-grained structures. For more information see Theory and Tutorial.



PDB ID: or upload a lo	with biological file: Choose	cal assembly (un File No file chose		Yes	
Chain ID:	(e.g., A or A	B, or leave blanl	k for all chains)		
➤ Advanced	options:				?
	ng Environment:				?
Email:		(optional, exce	ept for PDB file	s with > 2,000 res	sidues
Submit					
Load examples:					
Main result	Molecular motion	membrANM	Hitting time	Domain separation	on

enm.pitt.edu

- from prody import *
- from numpy import *
- from matplotlib.pyplot import *
- ion()
- anm, cot = calcANM('l cot', selstr='calpha')
- anm
- cot
- figure()
- showProtein(cot)
- figure()
- showSqFlucts(anm[:2], label= '2 modes')
- showSqFlucts(anm[:20], label= '20 modes')
- legend()

Application to cytochrome c PDB: I cot A protein of I21 residues

cmd ipython

Session 2: Viewing color-coded animations of individual modes

- writeNMD('cot_anm.nmd', anm, cot)
- Start VMD
- select Extensions → Analysis → Normal Mode Wizard
- Select 'Load NMD File'

Session 3: Cross-correlations $<(\Delta \mathbf{R}_i . \Delta \mathbf{R}_i)>$ between fluctuations

- figure()
- showCrossCorr(anm[0])
- cross_corr = calcCrossCorr(anm[0])

Session 4: Viewing cross-correlations using VMD

- writeHeatmap('anm_cross I.hm', cross_corr)
- VMD Load file
- Select cot_anm.nmd (from your local folder)
- Load HeatMap
- open anm_cross I.hm (from your local folder)